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1 Abstract
In this paper, we present the results of the article “Treewidth of the Kneser
Graph and the Erdős-Ko-Rado Theorem” by Harvey and Wood [5]. The
treewidth of a graph is a measure of its complexity, and is difficult to com-
pute in general. This work determines the treewidth of Kneser graphs, which
are a common class of combinatorial graphs whose vertices are all the k el-
ement subsets of the numbers 1 to n, with edges only between subsets that
are disjoint. We primarily focus our attention on proving their formula for
the exact treewidth of a Kneser graph when n is large compared to k.
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2 Introduction

2.1 Overview

Treewidth is a property of a graph that captures some sense of how “tree-
like” it is. Halin[4] was the first to define treewidth, using a somewhat
different notation from what we use today. The concept gained widespread
attention for the role it played in Robertson and Seymour’s influential papers
on the Graph Minor Theorem[14]. Since that time, treewidth has found
important applications in many diverse areas, including VLSI design (the
Gate Matrix Layout problem)[1] and the Cholesky factorization of sparse
symmetric matrices[1]. Linear time algorithms for some interesting problems
are available when the graph family in question has bounded treewidth[1].
Our exploration here will center on the recent work of Harvey and Wood[5],
wherein they find an exact expression for the treewidth of the Kneser graphs
Kneser(n, k) where n ≥ 4k2 − 4k + 3.

2.2 Tree Decompositions

We view a graph G as an ordered pair G = (V,E), where V is a finite set of
vertices and E is a set of 2-element subsets of V , called edges. Throughout
this paper, our graphs will be finite, simple, and undirected. For more of
the basic terminology regarding graphs, we refer the reader to the textbook
by West[15]. A tree decomposition of a graph G is a triple (T,B, f) where T
is a tree, B is a collection of subsets of V (G) (these subsets are called bags),
and f : V (T ) → B is a surjective function that maps each vertex of T to a
bag in B. Further, these properties must also hold:

1. the bags that contain a vertex v ∈ V (G) induce a non-empty connected
subtree of T . That is, for each v ∈ V (G), let Bv be the set of all the
bags containing v. Then the preimage f−1(Bv) = {t ∈ V (T ) : f(t) ∈
Bv} is the vertex set of a non-empty connected subtree of T .

2. for each vw ∈ E(G), some bag in B contains both v and w.

Figure 1 shows an example.
The width of a tree decomposition is the size of the largest bag, minus

1. In our example, as shown in Figure 2, the treewidth is 2. However, a tree
decomposition need not be minimum-width - Figure 3 shows a different,
valid, tree decomposition for the same graph that has a width of 3. The
treewidth of a graph G, denoted tw(G), is the minimum width of a tree
decomposition of G. Determining the treewidth of a graph in general is an
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Figure 1: The various parts of a tree decomposition (T,B, f) for a graph G
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Figure 2: An example graph, with a minimum-width tree decomposition

NP-complete problem, though for certain families of graphs it is more easily
computable.

2.3 Kneser Graphs

A Kneser graph, denoted Kneser(n, k) is the graph with all the k-element
subsets of [n] as vertices, and edges only between sets that do not intersect.
See Figure 3 for depictions of two small examples of Kneser graphs.

In the case of k = 1, Kneser(n, k) is the complete graph Kn. At k = 2 the
graph is an induced matching. We will usually assume herein that n ≥ 2k.

2.4 Statement of Main Results

These are the theorems of Harvey and Wood that concern Kneser graphs:

Theorem 1. [5, Theorem 1] Let G be a Kneser graph with n ≥ k2 − 4k+3
and k ≥ 3. Then

tw(G) =

(
n− 1

k

)
− 1
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Figure 3: An example graph, with a valid, but non-minimum-width tree
decomposition

Theorem 2. [5, Theorem 2 ] Let G be a Kneser graph with k = 2. Then

tw(G) =


0 if n ≤ 3

1 if n = 4

4 if n = 5(
n−1
2

)
− 1 if n ≥ 6

We consider Theorem 1 to be the main result of interest, and so we will
accordingly focus this project on presenting its proof.

3 Basic Properties of Treewidth
In this section we collect a number of basic facts about tree decompositions
that will prove useful later.

3.1 Extreme cases and Non-Uniqueness

Lemma 1. The maximum width tree decomposition of a graph with n nodes
has width n− 1

Proof. A tree with a single node that contains all vertices of the original
graph is a valid tree decomposition, with width n− 1. No bag can contain
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Figure 4: The graphs Kneser(6, 2) and Kneser(5, 2) (better known as the
Petersen graph)

more than n vertices since there are only n distinct vertices in the graph, so
there cannot be a tree with greater width.

Lemma 2. A graph G with no edges has tree width 0.

Proof. Suppose G is an empty graph with vertex set V = {v1, ..., vn}. Then
(Pn, B, f) is a valid tree decomposition of width 0, where Pn = ([n], {{i, j} :
|i − j| = 1} is a path on n vertices, B = {{vi} : i ∈ [n]} is the set of all
singletons of V , and the function f maps i 7→ {vi} for all i ∈ [n]. We note
that, since G has no edges, no bag needs more than one vertex.

Lemma 3. The minimum-width tree decomposition of a graph is not nec-
essarily unique.
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Proof. Consider the triangle K3 with vertices {a, b, c}. A minimum-width
tree for this graph has width 2 as it is a cycle. Note that both the graphs
in Figure 5 are valid width 2 tree decompositions.

abc a abc

Figure 5: Two minimum-width tree decompositions for K3

3.2 Subgraphs and Components

Lemma 4. The tree width of a subgraph is less than or equal to the tree
width of the containing graph.

Proof. Let G be a graph and T a minimal-width tree decomposition of G.
Let S ≤ G be a subgraph of G. Then to form a tree decomposition of S,
begin with T and delete any vertices of G − S from the bags of T . The
resulting tree T ′ has the same structure as T but its width is less than or
equal to that of T .

Lemma 5. The tree width of a disconnected graph G formed from compo-
nents G1, G2, ..., Gn is max{tw(G1), tw(G2), ..., tw(Gn)}.

Proof. Let T1, T2, ..., Tn be the tree decompositions of the components of
G. A tree decomposition for G can be formed by adding an edge from T1

to each of the other T2, ..., Tn. Since no new bags were added, nor new
vertices added to existing bags, the tree width is the greatest width of any
of T1, T2, ..., Tn.

3.3 Paths and Cycles

In this section, we consider paths and cycles, and we determine their treewidth
directly.

Lemma 6. A path has tree width 1.

Proof. Suppose Pn is a path with vertex set V = {v1, ..., vn}, where vi, vj
are adjacent if and only if |i−j| = 1. Let T = ([n−1], {{i, j} : |i−j| = 1} be
a path on n− 1 vertices, Then (T,B, f) is a valid tree decomposition of Pn,
where B = {{vi, vi+1} : i ∈ [n− 1]}, and the function f maps i 7→ {vi, vi+1}
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for all i ∈ [n− 1]. This decomposition has width 1. We also note that there
cannot be a decomposition with smaller width, since a single edge in a graph
implies a tree width of at least 1, so Pn has tree width 1.

Determining the width of cycles is a bit more interesting. We will need
to normalize our tree decompositions so that the bags all contain the same
number of vertices, and so that these bags have small differences along edges.
We begin with a definition.

A tree decomposition (T,B, f) of a graph G is said to be normalized
if all the bags have the same cardinality and, for each edge {i, j} in T , we
have

|f(i)− f(j)| = |f(j)− f(i)| = 1.

It is interesting that we may normalize our tree decompositions without
changing the width.

Lemma 7. [6, Lemma 2.2] If a graph G has a tree decomposition of width
k, then it also has a normalized tree decomposition of width k.

Proof. Suppose G has a tree decomposition (T,B, f) of width k. If any
bag has size < k + 1, there must exist neighbors i, j somewhere in T where
|f(i)| = k + 1 > |f(j)|. So there exists some vertex v ∈ f(i)− f(j). Adding
v to the bag f(j) increases |f(j)| and still yields a valid decomposition. We
may repeat until all bags have size k + 1.

Now fix any edge {i, j} in T . If f(i) = f(j) then we can contract edge
{i, j} in T , labeling the new vertex i and obtaining a (new) tree T and a
(still) valid decomposition. We may repeat until adjacent vertices in T have
distinct bags.

Finally, fix any edge {i, j} in T . If |f(i) − f(j)| > 1, there exists some
vertex u ∈ f(i)− f(j) and some vertex v ∈ f(j)− f(i). Subdivide the edge
{i, j} and call the new vertex t, located between i and j in the (new) tree
T . Associate t with the bag f(t) = (f(i)− {u}) ∪ {v}. Now the (new) tree
T has one new vertex and we still have a valid decomposition. Furthermore,
|f(i)− f(t)| = 1 and |f(t)− f(j)| = |f(i)− f(j)| − 1. We may repeat until
all edges have a difference of cardinality 1, as desired.

Lemma 8. If a graph G has treewidth k, then the minimum degree of G is
at most k.

Proof. Suppose G has a tree decomposition (T,B, f) of width k. By the
previous lemma, we may assume the decomposition is normalized. Let {i, j}
be any edge in T for which i is a leaf. Then the bag f(i) contains a vertex
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v 6∈ f(j). So all the neighbors of v must be in f(i) and therefore the degree
of v can be at most k.

Lemma 9. A cycle has tree width 2.

Proof. If not, there must exist a cycle of tree width 1. But the previous
lemma would imply it has a vertex of degree at most 1, which is a contra-
diction.

Lemma 10. A connected graph with at least 2 vertices has tree width 1 if
and only if it is a tree.

Proof. (⇐): Let T be a tree with |V (T )| ≥ 2. We proceed by induction.
Base case: Let T be a tree with 2 vertices, say u and v. Note that T has

a valid tree decomposition with a single bag {u, v}, and this decomposition
has width 1.

Inductive case: Suppose G1, ..., Gn are trees with tw(Gx) = 1 for
all x in [n], and let Tx be the respective minimal tree decomposition for
each Gx. Let v be a new vertex, connected to each of G1, ..., Gn by new
edges vg1, ..., vgn. Let this new graph be G. We construct a new tree
decomposition T for G as follows: add a new node {v}, and for each edge
vg1, vg2, ..., vgn in G, add nodes {v, g1}, {v, g2}, ..., {v, gn}, each with an edge
to {v}, and with an edge to its respective vertex in T1, T2, ..., Tn. None of
the new bags we added had more than two elements, so the resulting tree
has width 1.

(⇒): Suppose G has tree width 1, and suppose by way of contradiction
that G is not a tree. Then G contains a cycle and so its tree width is at
least 2. This is a contradiction.

3.4 Complete graphs and Cliques

Lemma 11. A complete graph Kn has tree width n− 1.

Proof. We proceed by induction.
Base case: K2 has tree width 1.
Inductive case: Suppose Kn−1 has tree width n − 2. Let Tn−1 be a

minimal tree decomposition for Kn−2. If we add a vertex v to Kn−1 and
connect it with all existing vertices, those new edges must be reflected in
the tree decomposition. Since there is an edge to every vertex, for every
x ∈ V (Kn−1), we must have xv in some bag. To avoid increasing the tree
width, there must be at least two bags in the tree decomposition for Kn−1

that have cardinality less than n− 1, which together contain all the vertices
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- by adding v to them, we will satisfy rule 2. Since we add v to at least two
of these, those two must be connected. However, each of these is connected
to a bag of size n − 1, by rule 1. So we have created a cycle. So we must
instead add v to a bag of size n− 1, which satisfies the rules and produces
a tree width of n− 1.

Lemma 12. Any graph that contains a clique of size k has tree width at
least k − 1.

Proof. If a graph G has a clique of size k, the clique has treewidth k − 1.
The clique is a subgraph of G, so tw(G) ≥ k − 1.

4 Separators and Shadows
From this point, all graphs are Kneser(n, k) graphs, and we use G, n, and
k implicitly. Let ∆(G) be the maximum degree, δ(G) the minimum degree,
and α(G) the cardinality of the largest independent set. (Recall a set of
vertices is independent if the induced subgraph contains no edges.)

4.1 Separators

A p-separator of order k for any p ∈ [23 , 1), is a set X ⊂ V (G) with |X| ≤ k
such that no component of G − X contains more than p|G − X| vertices.
See Figure 6 for an example.

Figure 6: Note X = {c, f, i} is a 2
3 -separator of order 3, since no component

of G−X has more than 2
3 |G−X| = 16/3 vertices.
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Theorem 3. [5, Theorem 4 ] (c.f. [14]) For each p ∈ [23 , 1), every graph G
has a p-separator of order tw(G) + 1.

Lemma 13. [5, Lemma 5 ] Let X be a p-separator. Then V (G −X) can
be partitioned into two parts A and B, with no edge between A and B such
that

• (1− p)|G−X| ≤ |A| ≤ 1
2 |G−X|

• 1
2 |G−X| ≤ |B| ≤ p|G−X|.

In other words, we have:

(1− p)|G−X| ≤ |A| ≤ 1

2
|G−X| ≤ |B| ≤ p|G−X|.

Proof. Since X is a p-separator, the vertices of G −X are partitioned into
components V1, . . . , Vc such that c ≥ 2 and, for any 1 ≤ i < j ≤ c, the
following two conditions hold:

1. there are no edges between Vi and Vj , and

2. 1 ≤ |Vi| ≤ |Vj | ≤ p|G−X|.

If c = 2, our partition has just two parts. In this case, we can let A = V2

and B = V1 and the result follows immediately.
If c ≥ 3, the pigeonhole principle implies |Vc−1 ∪ Vc| ≤ 2

3 |G−X|. (Oth-
erwise, |Vc−1 ∪ Vc| > 2

3 |G −X|, so one of |Vc−1| and |Vc| exceeds 1
3 |G − x|.

But then V1 >
1
3 |G− x|, and

|G−X| ≥ |V1|+ |Vc−1 ∪ Vc| > (13 + 2
3)|G−X|,

which is impossible.) So we can combine the 2 smallest components Vc−1

and Vc (and reorder if necessary) to obtain a new partition with c − 1 sets
satisfying the two conditions above. Repeat until we obtain a partition with
2 parts, as desired.

Theorem 4. (Erdős-Ko-Rado)[5, Theorem 6 ] (c.f. [8][2]). Let G be
Kneser(n, k) for some n ≥ 2k. Then α(G) =

(
n−1
k−1

)
. If n ≥ 2k + 1 and

A is an independent set such that |A| =
(
n−1
k−1

)
, then A = {v|i ∈ v} for a

fixed element i ∈ [n].
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Figure 7: Two examples of intersecting families of two-element subsets of a
four-element set

Figure 8: Cross-intersecting families A and B

Harvey and Wood use this definition, though the original Erdős-Ko-Rado
theorem defines A equivalently based on k-sets in [n]. See Figure 7 for an
example of intersecting families.

In a Kneser graph G, let A,B be sets of vertices of G. Then A and B
are cross-intersecting families if there are no edges between the vertices in
A and the vertices in B. See Figure 8 for an example.

Theorem 5. (Erdős-Ko-Rado for Cross-Intersecting Families)[5, Theorem
7 ] (c.f. [11][13]) Let n ≥ 2k and let A and B be cross-intersecting families
in the Kneser graph G. Then |A||B| ≤

(
n−1
k−1

)2. If n ≤ 2k + 1 and A and
B are cross-intersecting families such that |A||B| ≤

(
n−1
k−1

)2, then A = B =
{v|i ∈ v} for a fixed element i ∈ [n].

This forumulation, specific to Kneser graphs, is also due to Harvey and
Wood, and is less general than the original theorem by Pyber[13].

Let X be a 2
3 -separator that partitions G − X into A and B as in

Lemma 13. So there are no edges between A and B, so they are cross-
intersecting families. We have that |A| = c|G−X| where 1

3 ≤ c ≤ 1
2 . So by
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Theorem 5, c(1− c)|G−X|2 ≤
(
n−1
k−1

)2. Since 1
3 ≤ c ≤ 1

2 ,

|G−X|2 ≤
(
k−1
n−1

)2
c(1− c)

≤
(
n−1
k−1

)2
1
3(1−

1
3)

=

(
n−1
k−1

)2
2
9

= 9

(
n−1
k−1

)2
2

.

So,

|G−X| ≤ 3

(
n−1
k−1

)
√
2

.

Therefore, |G − X| ≤ 3√
2

(
n−1
k−1

)
, which provides a lower bound on |X|,

which (by Theorem 3) is also a lower bound on the treewidth. Therefore
tw(G) ≥

(
n
k

)
− 3√

2

(
n−1
k−1

)
− 1.

Furthermore, A and B partition V (G −X) and so are disjoint, though
that is not a requirement of Theorem 5. Theorem 5 also shows that when
|A||B| is maximized, A = B. Because of this, we can improve on the naive
bound on tw(G) above.

We need a few more definitions before the next lemmas.

4.2 Colex ordering

We refer to sets of size k with elements drawn from [n] as k-sets in [n], or
simply as k-sets when the source set is clear from context.

The colexicographic (“colex”) ordering of k-sets of [n] is a strict total
order in which a k-set x is less than the k-set y when max(x−y) < max(y−
x).

A set X of k-sets is first if X consists of the first |X| sets in the colex
ordering of all k-sets in [n]. Note that in the colex ordering of k-sets in [n]
(Figure 9 shows an example), if we consider the k-sets in [i] where i < n, we
see that they all come before any k-set containing an element greater than
i. This is because if x, y are k-sets in [i], [n] respectively, and j ∈ y > i,
then max(x − y) ≤ max(x) ≤ i, and max(y − x) ≥ since j ∈ y − x. This
will be useful in reasoning about first sets in the proof of the lower bound
in Theorem 1.

4.3 Shadows

Let X be a set of k-sets in [n]. For any c ≤ k, the c-shadow of X is all the
c-sets that are each a subset of some set in X. That is, the c-shadow of X
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Standard sort Colex sort
{1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 2, 4}
{1, 2, 5} {1, 3, 4}
{1, 2, 6} {2, 3, 4}
{1, 3, 4} {1, 2, 5}
{1, 3, 5} {1, 3, 5}
{1, 3, 6} {2, 3, 5}
{1, 4, 5} {1, 4, 5}
{1, 4, 6} {2, 4, 5}
{1, 5, 6} {3, 4, 5}
{2, 3, 4} {1, 2, 6}
{2, 3, 5} {1, 3, 6}
{2, 3, 6} {2, 3, 6}
{2, 4, 5} {1, 4, 6}
{2, 4, 6} {2, 4, 6}
{2, 5, 6} {3, 4, 6}
{3, 4, 5} {1, 5, 6}
{3, 4, 6} {2, 5, 6}
{3, 5, 6} {3, 5, 6}
{4, 5, 6} {4, 5, 6}

Figure 9: Standard and colexecographic (“colex”) ordering of 3-sets in [6]

Set 2-set
{2, 3, 6} {2, 3}

{2, 6}
{3, 6}

{2, 4, 6} {2, 4}
{2, 6}
{4, 6}

{2, 3, 4} {2, 3}
{2, 4}
{3, 4}

Figure 10: An example of the 2-shadow of the set
{{2, 3, 6}, {2, 4, 6}, {2, 3, 4}}. The complete shadow in colex order is:
{{2, 3}, {2, 4}, {3, 4}, {2, 6}, {3, 6}, {4, 6}}
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is {s : |s| = c,∃x ∈ X.c ⊆ x}. For example, see Figure 10.

Lemma 14. (A first set minimizes the shadow) [5, Lemma 8 ], (c.f. [9],
[7], [3]). Let X be a set of k-sets in [n], c ≤ k, and S the c-shadow of X.
Suppose |X| is fixed but X is not. Then |S| is minimized when X is first.

4.4 Complements of k-sets

For x a k-set in [n], the complement of x is the (n − k)-set ([n] − x), and
the complement of a set of k-sets X (written X) is {y : ∃x ∈ X.y = x}. For
example, if x = {1, 3} is a 2-set in [6], x = {2, 4, 5, 6}.

5 Upper bound for treewidth
We begin with a lemma that gives us an upper bound for any graph. We
will then use that, along with properties of Kneser graphs, to prove a tighter
bound for Kneser graphs.

Lemma 15. [5, Lemma 9 ]. If H is a graph, tw(H) ≤ max{∆(H), |V (H)|−
α(H)− 1}.

Proof. We can construct a tree decomposition for any graph H by taking
a maximum independent set I of size α = α(H), and creating α + 1 bags:
first, a bag that contains all of H − I, and then α bags Ii for i ∈ [α], which
partition I. To each Ii we add the neighborhood of the ith vertex in I. We
create a tree that is a star, with central node mapping to the H−I bag, and
then a leaf for each of the 1-element bags. See Figure 11 for an example.
Any induced subgraph that contains the center is necessarily connected, and
any edge vw has vertices in at most one leaf bag, since the leaf bags were all
formed from an independent set. So this is a valid tree decomposition. The
size of the center bag is |V (H)|−α, and since the leaf bags are formed from
a single vertex and its neighborhood, they are of size at most ∆(H).

Lemma 16. [5, Lemma 10 ]. If G is a Kneser graph with k ≥ 2 and
n ≥ 2k + 1, then tw(G) ≤

(
n

k−1

)
− 1.

Proof. Since n ≥ 2k + 1, we have by Lemma 15 and Theorem 4,

tw(G) ≤ max{∆(G), |V (G)| − α(G)− 1}

= max
{(

n− k

k

)
,

(
n

k

)
−
(
n− 1

k − 1

)
− 1

}
.
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{1,3},{1,4},
{3,4},{1,5},
{3,5},{4,5}

{2,5},{1,3},
{3,4},{1,4}

{2,3},{2,5},
{4,5},{2,4}

{1,2},{4,5},
{3,4},{3,5}

{2,4},{1,3},
{1,5},{3,5}

Figure 11: A sample star construction for the upper bound of Lemma 15.
The source graph is the Petersen graph, Kneser(5,2), which is well known
to have treewidth 5
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Since k ≥ 2, (
n− k

k

)
≤

(
n− 2

k

)
<

(
n− 1

k

)
and so (

n− k

k

)
≤

(
n− 1

k

)
− 1.

Therefore, tw(G) ≤
(
n−1
k

)
− 1.

6 Lower bound for treewidth
We now turn our attention to the lower bound for Theorem 1.

Lemma 17. ([5, Lemma 11]). Let X be a p-separator of the Kneser graph
G. If n ≥ max(4k2 − 4k + 3, 1

1−p(k
2 − 1) + 2), then |X| ≥

(
n−1
k

)
).

Proof. Suppose, by way of contradiction, |X| <
(
n−1
k

)
. Then |G − X| >(

n−1
k−1

)
. Lemma 13 tells us G−X can be partitioned into two parts A and B

such that (1− p)|G−X| ≤ |A| ≤ 1
2 |G−X| ≤ |B| ≤ p|G−X| and there are

no edges between A and B. For any i ∈ [n], let Ai := {v ∈ A : i ∈ v}, and
define A−i := {v ∈ A : i /∈ v}. Note that Ai and A−i partition the set A for
any i. Define similar sets for B.

Claim 1. There exists some i such that |Bi| ≥ 1
k |B|.

Proof. Because |A| ≥ (1−p)|G−X| > 0, there A contains at least one vertex
v. Without loss of generality, v = {1, ..., k}. No w ∈ B is adjacent to v, so
w and v intersect. So every w contains at least one of 1, ..., k. Therefore at
least one of these elements appears in at least 1

k |B| of the vertices of B.

Without loss of generality, |Bn| ≥ 1
k |B|.

Claim 2. |Bn| >
(
n−3
k−2

)
+
(
n−1
k−2

)
.

Proof. We know |B| ≥ 1
2 |G −X| ≥ 1

2

(
n−1
k−1

)
. So by Claim 1 and our subse-

quent assumption, |Bn| ≥ 1
k |B| ≥ 1

2k |G − X| ≥ 1
2k

(
n−1
k−1

)
. Suppose, by way

of contradiction, that |Bn| ≤
(
n−3
k−2

)
+
(
n−2
k−2

)
. So

1

2k

(
n− 1

k − 1

)
≤

(
n− 3

k − 2

)
+

(
n− 2

k − 2

)
.

So
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(n− 1)! ≤ 2k(k − 1)((n− k)(n− 3)! + (n− 2)!).

Therefore

n2−3n+2 = (n−1)(n−2) ≤ 2k(k−1)(2n−k−2) = 4k2n−4kn−2k3−2k2+4k.

So n2+(4k−4k2−3)n+2k3+2k2−4k+2 ≤ 0. Because n ≥ 4k2−4k+3, we
have that 2k3+2k2−4k+2 ≤ 0. But k ≥ 1, so we have a contradiction.

We examine the set of complements of vertices in A that do not contain
n, A−n. Note that n is contained in each set in A−n. Define A−n

∗
:= {v−n :

v ∈ A−n}. That is, remove n from each set in A−n, and note there is a one-
to-one correspondence between (n − k)-sets in A−n and (n − k − 1)-sets in
A−n

∗. Similarly, define B∗
n := {v− n : v ∈ Bn}. That is, delete n from each

vertex of Bn. These new sets are (k − 1)-sets in [n− 1].

Claim 3. If v∗ ∈ B∗
n and w∗ ∈ A−n

∗, then v∗ 6⊆ w∗.

Proof. Suppose, by way of contradiction, that v∗ ⊆ w∗. Then v ⊆ w by
restoring n to both sets. So v and w are adjacent. But v ∈ Bn ⊆ B and
w ∈ An ⊆ A, which is a contradiction.

Let S be the (k−1)-shadow of A−n
∗. So v ∈ B∗

n implies v /∈ S, by Claim
3. Therefore,

B∗
n ⊆

(
[n− 1]

k − 1

)
− S.

Thus if we take |S| to be minimized, we have an upper bound for |B∗
n|, and

by Lemma 14, |S| is minimized when A−n
∗ is first.

Claim 4. |A−n| ≤
(
n−3
k−2

)
.

Proof. We know |A−n| = |A−n| = |A−n
∗|, so we need only show that

|A−n
∗| ≤

(
n−3
k−2

)
. Suppose, by way of contradiction, that |A−n

∗| ≥
(
n−3
k−2

)
=(

n−3
n−k−1

)
. Firstly, we show that |S| ≥

(
n−3
k−1

)
. Since we are proving a

lower bound, we can take |S| to be minimized, and so we can assume
that A−n

∗ is first, and contains the first
(

n−3
n−k−1

)
-sets on [n − 3], because

there are
(

n−3
n−k−1

)
such sets, which come before all other sets in the order-

ing. Therefore all (k − 1)-sets in [n − 3] are in S, and so |S| ≥
(
n−3
k−1

)
.

Therefore |B∗
n| ≤

(
n−1
k−1

)
−

(
n−3
k−1

)
=

(
n−3
k−2

)
+

(
n−2
k−2

)
. But Claim 2 tells us

|B∗
n| = |Bn| >

(
n−3
k−2

)
+
(
n−2
k−2

)
, which is a contradiction.
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Claim 5. |An| ≥ k
k+1 |A|.

Proof. We begin by showing that |An| ≥ k|A−n|. Suppose not. Then by
Claim 4, |A| = |An| + |A−n| < (k + 1)|A−n| ≤ (k + 1)

(
n−3
k−2

)
. But |A| ≥

(1−p)|G−X|. So (1−p)
(
n−1
k−1

)
< (k+1)

(
n−3
k−2

)
. Then (n−1)(n−2) < 1

1−p(k+

1)(k−1)(n−k) ≤ 1
1−p(k+1)(k−1)(n−2). So we have n < 1

1−p(k
2−1)+1,

which violates the lower bound on n. So |An| ≥ k|A−n| = k(|A|− |An|), and
(k + 1)|An| ≥ k|A| as required.

Claim 6. Bn = B.

Proof. Suppose not. Then there is some vertex v ∈ B such that n /∈ v. By
definition, each w ∈ An contains n, and some other element of v, because
vw is not an edge. We can construct any vertex of An thus: choose element
n, then pick one of the k elements of v, and choose the remaining k − 2
elements from the remaining n− 2 elements of [n]. So

|An| ≤ 1 · k
(
n− 2

k − 2

)
.

We have overcounted some vertices of An, so this is a a weak upper bound.
We know |A| ≥ (1− p)|G−X| ≥ (1− p)

(
n−1
k−1

)
. So by Claim 5,

(1− p)k

(k + 1)

(
n− 1

k − 1

)
≤ k

k + 1
|A| ≤ k

(
n− 2

k − 2

)
.

Therefore n−1
k−1 ≤ 1

1−p(k+1) and n ≤ 1
1−p(k

2 − 1)+ 1, which contradicts our
lower bound on n.

Claim 7. An = A.

Proof. We proceed along the same lines as Claim 6. Suppose our claim does
not hold and we have v ∈ A such that n /∈ v. By Claim 6, |Bn| = |B| ≥
1
2

(
n−1
k−1

)
, and we have an upper bound on |Bn| equal to the upper bound on

|An| in the previous proof. Therefore

1

2

(
n− 1

k − 1

)
≤ |B| = |Bn| ≤ k

(
n− 2

k − 2

)
,

and so n ≤ 2k(k − 1) + 1, which contradicts the lower bound on n.
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By Claims 6 and 7, we have that every vertex in G − X = A ∪ B
contains n. Therefore |G − X| ≤

(
n−1
k−1

)
and |X| ≥

(
n−1
k

)
, and we have a

contradiction. By Lemma 17, if X is a 2
3 -separator of the Kneser graph G

and n ≥ 4k2 − 4k + 3, |X| ≥
(
n−1
k

)
. So by Theorem 3, tw(G) ≥

(
n−1
k

)
− 1,

which completes the proof of Theorem 1.

7 Conclusions and directions
We have defined and shown examples of treewidth in graphs, and we have
proved, in the fashion of Harvey and Wood, the exact treewidth for the
Kneser graph where n ≥ 4k2 − 4k + 3. Harvey and Wood conjecture[5, pg.
9] that this same formula also holds for n ≥ 3k and k ≥ 2, and possibly for
n ≥ 3k − 1 with the Petersen graph as the only exception.

Other authors (e.g. [12][10]) have extended the work of Harvey and
Wood to generalized Kneser graphs. A generalized Kneser graph is one that
adds a third parameter t, where the vertices may be joined if and only if
the size of their intersection is less than t - a Kneser(n,k) graph is then a
K(n, k, 1) generalized Kneser graph.

Another related family of graphs is the family of generalized Johnson
graphs. Here, J(n, k, i) denotes the graph whose vertices are the k-element
subsets of an n-element set, and where two vertices are adjacent whenever
the intersection of their subsets has cardinality exactly i. It would be inter-
esting to know if the techniques here could provide insight into the treewidth
of generalized Johnson graphs.
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